If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=67
We move all terms to the left:
2x^2+4x-(67)=0
a = 2; b = 4; c = -67;
Δ = b2-4ac
Δ = 42-4·2·(-67)
Δ = 552
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{552}=\sqrt{4*138}=\sqrt{4}*\sqrt{138}=2\sqrt{138}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{138}}{2*2}=\frac{-4-2\sqrt{138}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{138}}{2*2}=\frac{-4+2\sqrt{138}}{4} $
| 0.2^x^2=0.04^4x-6 | | 37-(3x+5)=9x-8(x-3) | | 5x+49=3(6x-2x) | | 200/x+10=(200/x)-1 | | 2^x=162 | | 7x-11=5x16 | | 12x/3=8 | | 2^x-2=160 | | 3/15=-6x/5 | | 200/x+10=(200-x)/x | | 7x+34+9x=46 | | 4(2-x)=7x-3 | | 27—-5j=72 | | X+2(5+x)=85 | | 10=5p+10 | | 2/x+3=3/2x-3 | | 360=2(x+(8)x)) | | T(N)=4(6n+1) | | x2+10+1=0 | | 14=5x+3/2 | | 3x+15=-18 | | 4n^2+3n-27=0 | | h-3/5^2=1/2 | | 10t-5t^2=0 | | C-3/7+2/7=5/7(x+3/4 | | -10t-5t^2=0 | | x=5x-17=-x+7 | | 3xx(x+9)=0 | | 36–9x=9(4-x) | | 23x-5=5+21x | | -2x+-12=7x-28 | | (3y+5)-5-3y=(2y-10)+10-2y |